by Delny Britton, RSHom
Delny Britton studied at the British School of Homœopathy and the Dynamis School and has been
in practice for 11 years. She has a particular interest in sustainable healthcare and is a long-standing advocate for the protection of the environment and animal welfare. With a background in environmental science and journalism, Delny has worked internationally on river and wetland restoration projects and written for television and numerous publications, including the Times Literary Supplement and the Ecologist. She has degrees in botany, hydro- biology and zoology, including a PhD from Cape Town University.
"I have written this article to bring to the attention of the homeopathic
community an ethical issue I feel strongly about; it’s one I suspect others
feel strongly about too. While the ethical dimension remains the main
driver for change I believe this is not the only reason why experimenting
on animals does homeopathy a disservice. In this article I explain why it’s
time to stop causing harm to animals in the name of homeopathy and to
concentrate instead on forms of research that are more useful in practice,
can benefit humanity and promote the therapy we know and love".
Reason 1: It involves suffering,
often severe
Animal experimentation within the field of homeopathy has taken place for many decades. Today it is going on in universities and research centres throughout Europe, in India, South America, Australia and the Middle East (Iran, Israel), with Brazil, India and Italy particularly well represented in English-language journals. Databases such as HomBRex and PubMed / MED-LINE contain the details of studies involving animals of all descriptions (such as mice, rats, toads, eels, guinea pigs, non-human primates) and a wide variety of conditions, most of them acute in nature. In the majority of these studies the ‘diseases’ and conditions of interest were artificially induced first in the experimental animals. Then one or two (occasionally several) remedies were given to the animals to study their effects on the induced condition.
Animal experimentation within the field of homeopathy has taken place for many decades. Today it is going on in universities and research centres throughout Europe, in India, South America, Australia and the Middle East (Iran, Israel), with Brazil, India and Italy particularly well represented in English-language journals. Databases such as HomBRex and PubMed / MED-LINE contain the details of studies involving animals of all descriptions (such as mice, rats, toads, eels, guinea pigs, non-human primates) and a wide variety of conditions, most of them acute in nature. In the majority of these studies the ‘diseases’ and conditions of interest were artificially induced first in the experimental animals. Then one or two (occasionally several) remedies were given to the animals to study their effects on the induced condition.
The methodology used to make
healthy experimental animals ill
has been borrowed from mainstream biomedical research. So
you will read about
Even the notorious writhe test, strongly discouraged on welfare grounds by pharmacologists (see, for example, Gawade, 2012), has made an appearance in homeopathic research in the study of inflammation (Dos Santos et al, 2007). It involves injecting mice intraperitoneally with irritant substances like acetic acid and counting the number of times they writhe in pain, with or without treatment with anti-inflammatory medicines. Freund’s adjuvant – discouraged because of the severe inflammation and tissue necrosis it causes, often leading to self-mutilation – has also been used (Patel et al, 2012; Sarkar et al, 2014).
All these experiments cause harm and suffering, often severe, and all animals with the exception of non-human primates are killed (‘sacrificed’) at the end of the experiment.
- inflammatory states produced by injecting animals with substances like carrageenan to promote pain and swelling (Conforti et al, 2007);
- artificial diabetes created by means of alloxan (Kumar & Nayak, 2008);
- convulsions induced by strychnine (Alecu et al, 2010);
- nerve damage simulated by severing sciatic nerves (Mohammadi et al, 2012);
- sepsis created by puncturing intestines (Oberbaum et al, 2011);
- stress and anxiety enhanced by repeated electric shocks (Bousta et al, 2001),
- or forced swimming tests (Pinto et al, 2008),
- or sleep deprivation (Zubedat et al, 2013),
- or the use of medieval-style restraints (Dos Santos et al, 2007) and so on.
Even the notorious writhe test, strongly discouraged on welfare grounds by pharmacologists (see, for example, Gawade, 2012), has made an appearance in homeopathic research in the study of inflammation (Dos Santos et al, 2007). It involves injecting mice intraperitoneally with irritant substances like acetic acid and counting the number of times they writhe in pain, with or without treatment with anti-inflammatory medicines. Freund’s adjuvant – discouraged because of the severe inflammation and tissue necrosis it causes, often leading to self-mutilation – has also been used (Patel et al, 2012; Sarkar et al, 2014).
All these experiments cause harm and suffering, often severe, and all animals with the exception of non-human primates are killed (‘sacrificed’) at the end of the experiment.
In one particularly disturbing
Brazilian study 12 capuchin
monkeys were poisoned with cyclo-
phosphamide (CP), a carcinogenic
drug used to treat cancer in humans,
to see whether a patented homeopathic combination remedy called
Canova could mitigate the drug’s
devastating effects on the immune
system (Leal et al, 2012). Physical
restraint (squeeze cages) and chemical restraint (ketamine) were used
on a daily basis in order to weigh
the animals and take blood samples from their femoral veins. All
CP-treated animals became ill –
two so seriously that they had to be destroyed before the end of the
experiment. A post-mortem listed
ulcerative lesions of the gastro-
intestinal tract, herpetic lesions of
the mouth and skin, haemorrhagic
cystitis and renal damage amongst
other findings.
While welfare concerns inevitably focus on the experiment itself we should remember that it’s not just the invasive procedures lab animals are subjected to that cause distress. Experimental animals great and small experience fear more than anything else – pain included (Morton, 2013). Thus heart rates, blood pressure and stress hormones rise in response to routine laboratory procedures such as handling and blood sampling and feeding through a tube (Balcombe et al, 2004). Barren living conditions can result in boredom and depression which, in turn, lead to repetitive and uniform movements and even self- mutilation (Wemelsfelder, 1994). In the CP experiment the 12 monkeys were confined in individual cages for 50 days before the 40-day experiment even began – a deeply stressful experience for such highly social animals. We know that distressed animals generate unreliable information (Osborne, 2011) so how can research that causes unusual behaviour and physiology ever be considered good science? The short answer is, it can’t.
Reason 2: It’s unethical
It is hard to reconcile much of the methodology mentioned above with homeopathy, a non-violent, safe and progressive system of medicine that evolved in response to the harmful medical practices of the day. But these experiments – sometimes bafflingly referred to as ‘pre-clinical research’ – are taking place as you read this article. They are being approved by ethics committees, presented at conferences and published in journals. It is important to note at this point that it is almost exclusively mainstream university researchers – rather than homeopaths – that are involved in this work, a fact that has important consequences for the nature of the research and its relevance to the practice of homeopathy (see Reason 4).
Scientific journals have an important role to play in ensuring the research they publish gives full
consideration to animal welfare
and ethical issues, yet currently
around 45% of English-language
journals that publish animal
research have no ethical policies on
animal use, while 19% simply ask
that research is conducted according to relevant laws or institutional
guidelines (Osborne, 2011).
These can vary a lot in both the level of detail and the standards required, and often do not reflect best practice which now requires researchers to question whether the work actually justifies the use of animals and whether alternatives could be used instead (see Reason 6). So merely citing guidelines does little to ensure that a robust ethical review has taken place or that alternatives to animals have been thoroughly investigated.
When you combine weak animal welfare legislation with weak journal publication policies that don’t reflect best practice in animal research you encourage work of dubious ethical quality, like that involving the writhe test described earlier, or Freund’s adjuvant, or non-human primates. You also encourage bad science. The findings of the CP study, for example, are completely invalidated by a small sample size. Twelve animals, assigned to three treatment groups, were used in this experiment – effectively too small a number for the results to have any statistical power (particularly as two of them died). So even though the researchers concluded that Canova protects against DNA damage and damage to white blood cells, these conclusions are unsupported. An effective ethics committee would
These can vary a lot in both the level of detail and the standards required, and often do not reflect best practice which now requires researchers to question whether the work actually justifies the use of animals and whether alternatives could be used instead (see Reason 6). So merely citing guidelines does little to ensure that a robust ethical review has taken place or that alternatives to animals have been thoroughly investigated.
When you combine weak animal welfare legislation with weak journal publication policies that don’t reflect best practice in animal research you encourage work of dubious ethical quality, like that involving the writhe test described earlier, or Freund’s adjuvant, or non-human primates. You also encourage bad science. The findings of the CP study, for example, are completely invalidated by a small sample size. Twelve animals, assigned to three treatment groups, were used in this experiment – effectively too small a number for the results to have any statistical power (particularly as two of them died). So even though the researchers concluded that Canova protects against DNA damage and damage to white blood cells, these conclusions are unsupported. An effective ethics committee would
never give the green light to a
study involving animals that was
doomed to scientific failure, nor
one involving non-human primates
unless under very exceptional circumstances, nor one where alternative testing methods existed. And a journal editor working to a clear
and robust ethical policy on animal
research would have rejected the
work for similar reasons.
This is just one of many examples that demonstrate how weak standards do nothing to foster high-quality, innovative research or encourage a shift away from animal models towards more scientifically relevant and ethical testing methodologies (see Reason 7). They encourage instead the kind of projects that do not require time-consuming enquiry and evidence gathering – work that cannot hope to address the burning questions that need answering within homeopathy. So more and more work is done, much of it ‘generally adequate’ (Bonamin & Endler, 2010) rather than outstanding in quality, and more and more research papers follow the multitudes of other such publications into the ever-expanding cyber- vaults of electronic databases.
Researchers often fail to meet even basic legal or institutional requirements on animal welfare. We know this from numerous ex-posés of work carried out at top UK research institutions (the breaches of animal experiment licences at Imperial College in 2013, for example), which gives little confidence that the same behaviour is not occurring in other parts of the world and within basic homeopathic research. One standard requirement of virtually all welfare guidelines that is never followed by homeopathic researchers (for fear of interfering with the experiment) is the provision of appropriate analgesia or sedation to relieve pain and distress. Thus control group rats in one of the Freund’s adjuvant studies were left for three weeks whilst arthritic lesions in their feet became progressively more severe and painful. No pain relief was given because this would have invalidated the experiment. Had the 12 monkeys in the CP experiment received the same standard treatment given to human patients undergoing CP therapy, their suffering would have been alleviated somewhat by anti- inflammatories, anti-nausea drugs and intravenous fluid via a drip. Instead, all that two of them received was euthanasia.
Ultimately what really brings home the unethical nature of much of this research are the insights that homeopathy has given us into the inner worlds of animals and their spiritual dimensions. Through our provings we have come to recog- nise the capacity of all kinds of species to experience joy, fear, grief, frustration and more (read, for example, some of the provings in Nancy Herrick’s Animal Mind, Human Voices). We cannot plead ignorance of this, or of the ability of animals to suffer in much the same way we do, and with this knowledge comes a moral duty to do all we can not to add to this suffering.
"Humankind’s greatest goal, which outweighs the lengthening of life through medical advancements, is to evolve spiritually and (that), in order to do this, there is a need for us as a species to learn to think of other beings as ends, rather than means.
This is just one of many examples that demonstrate how weak standards do nothing to foster high-quality, innovative research or encourage a shift away from animal models towards more scientifically relevant and ethical testing methodologies (see Reason 7). They encourage instead the kind of projects that do not require time-consuming enquiry and evidence gathering – work that cannot hope to address the burning questions that need answering within homeopathy. So more and more work is done, much of it ‘generally adequate’ (Bonamin & Endler, 2010) rather than outstanding in quality, and more and more research papers follow the multitudes of other such publications into the ever-expanding cyber- vaults of electronic databases.
Researchers often fail to meet even basic legal or institutional requirements on animal welfare. We know this from numerous ex-posés of work carried out at top UK research institutions (the breaches of animal experiment licences at Imperial College in 2013, for example), which gives little confidence that the same behaviour is not occurring in other parts of the world and within basic homeopathic research. One standard requirement of virtually all welfare guidelines that is never followed by homeopathic researchers (for fear of interfering with the experiment) is the provision of appropriate analgesia or sedation to relieve pain and distress. Thus control group rats in one of the Freund’s adjuvant studies were left for three weeks whilst arthritic lesions in their feet became progressively more severe and painful. No pain relief was given because this would have invalidated the experiment. Had the 12 monkeys in the CP experiment received the same standard treatment given to human patients undergoing CP therapy, their suffering would have been alleviated somewhat by anti- inflammatories, anti-nausea drugs and intravenous fluid via a drip. Instead, all that two of them received was euthanasia.
Ultimately what really brings home the unethical nature of much of this research are the insights that homeopathy has given us into the inner worlds of animals and their spiritual dimensions. Through our provings we have come to recog- nise the capacity of all kinds of species to experience joy, fear, grief, frustration and more (read, for example, some of the provings in Nancy Herrick’s Animal Mind, Human Voices). We cannot plead ignorance of this, or of the ability of animals to suffer in much the same way we do, and with this knowledge comes a moral duty to do all we can not to add to this suffering.
"Humankind’s greatest goal, which outweighs the lengthening of life through medical advancements, is to evolve spiritually and (that), in order to do this, there is a need for us as a species to learn to think of other beings as ends, rather than means.
(David O. Wiebers, Emeritus
Professor of Neurology, 1994).
Reason 3: It’s not getting us anywhere
Reason 3: It’s not getting us anywhere
We do research into homeopathy
for three main reasons: to add to
the evidence base; to determine
mode of action; and to improve
clinical care for our patients.
As far as the evidence base is concerned, sceptics say there IS no evidence for homeopathy. This is not true of course but, while many randomised controlled trials (RCTs) of homeopathy have been carried out – with 44% showing a balance of positive evidence (a comparable percentage to trials of conventional medicine) – less than a third actually reflect real-life homeopathic practice, i.e. classical, individualised homeopathy (British Homeopathic Association, 2014). It is hard to shoehorn a complex and holistic therapy like homeopathy into the confines of an RCT and doing so tends to turn trials of homeopathy into efficacy trials of a single remedy, as in conventional, ‘one-size-fits-all’ drugs trials. But ways around such obstacles are being developed; see, for example, the ingenious ‘cohort multiple RCT’ (Relton et al, 2010), clearing the way for clinically relevant trials of homeopathy and, ultimately, additional evidence for its effectiveness.
As far as the evidence base is concerned, sceptics say there IS no evidence for homeopathy. This is not true of course but, while many randomised controlled trials (RCTs) of homeopathy have been carried out – with 44% showing a balance of positive evidence (a comparable percentage to trials of conventional medicine) – less than a third actually reflect real-life homeopathic practice, i.e. classical, individualised homeopathy (British Homeopathic Association, 2014). It is hard to shoehorn a complex and holistic therapy like homeopathy into the confines of an RCT and doing so tends to turn trials of homeopathy into efficacy trials of a single remedy, as in conventional, ‘one-size-fits-all’ drugs trials. But ways around such obstacles are being developed; see, for example, the ingenious ‘cohort multiple RCT’ (Relton et al, 2010), clearing the way for clinically relevant trials of homeopathy and, ultimately, additional evidence for its effectiveness.
How do basic animal studies
contribute to the homeopathic
evidence base? They can (and do)
demonstrate biological action and
they also disprove the notion that
homeopathy is merely placebo.
And there are certainly a very large
number of them. But there is only
so much that can be achieved
through basic research. Ultimately
lab animal studies represent the
weakest evidence for an intervention (Phillips et al, 2009) and no number of them outweigh the
findings of even a SINGLE well-conducted human study (Hess,
2004).
So, if demonstrating the effectiveness of homeopathy is a priority – as researchers say it is – then research efforts clearly need to be focused on clinical trials, either human or veterinary, rather than basic animal research. In Brazil just 3.7% of academic research into homeopathy between 1985 and 2006 involved clinical studies – a staggeringly low proportion (Estrêla and Caetano, 2013). With cancer sufferers in every town and intractable problems with chemotherapeutic drugs, how much more useful would the CP study have been had it involved real-life cancer patients receiving CP as part of their treatment – perhaps at the hospital where one of the researchers was based?
Veterinary research directed at improving the health of animals has yielded positive evidence for the effectiveness of homeopathy and practical benefits at the same time – without recourse to harm. A recent study of diarrhoea in piglets carried out in the Netherlands, for example (Camerlink et al, 2010), demonstrates the role homeopathy can play in reducing antibiotic use on farms, while a British study of Cushing’s disease in horses and dogs showed success rates comparable to conventional treatment but without the side- effects, relapse rates and cost (Elliott, 2001).
Numerous small but valuable studies like these have been carried out over the years but RCTs of veterinary homeopathy remain the holy grail of evidence- building, just 44 of them having been published in peer-reviewed journals by the end of 2013 (British Homeopathic Association, 2014).
So, if demonstrating the effectiveness of homeopathy is a priority – as researchers say it is – then research efforts clearly need to be focused on clinical trials, either human or veterinary, rather than basic animal research. In Brazil just 3.7% of academic research into homeopathy between 1985 and 2006 involved clinical studies – a staggeringly low proportion (Estrêla and Caetano, 2013). With cancer sufferers in every town and intractable problems with chemotherapeutic drugs, how much more useful would the CP study have been had it involved real-life cancer patients receiving CP as part of their treatment – perhaps at the hospital where one of the researchers was based?
Veterinary research directed at improving the health of animals has yielded positive evidence for the effectiveness of homeopathy and practical benefits at the same time – without recourse to harm. A recent study of diarrhoea in piglets carried out in the Netherlands, for example (Camerlink et al, 2010), demonstrates the role homeopathy can play in reducing antibiotic use on farms, while a British study of Cushing’s disease in horses and dogs showed success rates comparable to conventional treatment but without the side- effects, relapse rates and cost (Elliott, 2001).
Numerous small but valuable studies like these have been carried out over the years but RCTs of veterinary homeopathy remain the holy grail of evidence- building, just 44 of them having been published in peer-reviewed journals by the end of 2013 (British Homeopathic Association, 2014).
Perhaps the greatest spanner in
the works as far as gaining acceptance of homeopathy is concerned is
the fact that we don’t understand
its mode of action. People want to
know not only that homeopathy
works, but also HOW it works.
Researchers using animal models
often propose a possible mode of
action, for example that the remedies act directly on inflammatory
mediators, or on the immune system, or on certain enzyme pathways and so on. These explanations are based on a conventional
and materialistic view of the body
and in many respects they are half-right.
As homeopaths, however, we know the situation is significantly more complex than this because our remedies act first and foremost at an energetic level, on the vital force itself. They affect the whole organism, touching the mind and spirit as much as they act on the body. If we want to explain the mode of action it would seem logical to study the energetic qualities of our remedies and the phenomenon of the vital force itself, not simply the physical manifestations of treatment. Homeopathy is not allopathy, it is energy medicine and it requires a completely new approach to research. To quote a wise but unknown author:
‘If you always do what you always did, you will always get what you always got’.
Over the decades countless animals have been experimented on, yet this has brought us no nearer to demonstrating mode of action. It is time for something different – to move out of the tired rut of animal experiments, to be innovative and creative and to embrace new ideas emanating from other fields of science. Translating the results of basic animal studies to real-life situations involving sick humans is an impossible task (see Reason 7), and we know from mainstream medicine that it is clinical research rather than basic research that has the most effect on patient care (Pound and Bracken, 2014).
As a consequence none of the animal experiments referred to above are likely to be of help to practising homeopaths. Stuart Close, professor of homeopathic philosophy at the New York Medical College from 1909-1913, concluded that
As homeopaths, however, we know the situation is significantly more complex than this because our remedies act first and foremost at an energetic level, on the vital force itself. They affect the whole organism, touching the mind and spirit as much as they act on the body. If we want to explain the mode of action it would seem logical to study the energetic qualities of our remedies and the phenomenon of the vital force itself, not simply the physical manifestations of treatment. Homeopathy is not allopathy, it is energy medicine and it requires a completely new approach to research. To quote a wise but unknown author:
‘If you always do what you always did, you will always get what you always got’.
Over the decades countless animals have been experimented on, yet this has brought us no nearer to demonstrating mode of action. It is time for something different – to move out of the tired rut of animal experiments, to be innovative and creative and to embrace new ideas emanating from other fields of science. Translating the results of basic animal studies to real-life situations involving sick humans is an impossible task (see Reason 7), and we know from mainstream medicine that it is clinical research rather than basic research that has the most effect on patient care (Pound and Bracken, 2014).
As a consequence none of the animal experiments referred to above are likely to be of help to practising homeopaths. Stuart Close, professor of homeopathic philosophy at the New York Medical College from 1909-1913, concluded that
"... nothing of any real therapeutic
value has ever been learned by
experiment upon animals that could
not have been learned better, more
simply and more humanely by
harmless experiments upon human
beings; while the knowledge gained
in such experiments on human
beings is equally valuable for use in the treatment of sick animals.
The great majority of our patients present with chronic complaints that develop naturally and uniquely, conditions that are influenced by life events, environmental factors, inherited traits and so on that all need to be considered when prescribing. Relatively few patients present with severe poisonings, burns, or artificially induced tumours and, even if they did, they would receive individualised treatment because homeopaths, of course, practise ‘personalised medicine’ (see Reason 7) and prescribe on the totality of the symptoms not the condition itself.
If animal experiments don’t positively influence patient care, don’t add significantly to the evidence base and haven’t brought us any closer to discovering mode of action, then who exactly does benefit from this research and why is it still being done? To boost publication records and academic careers? Out of curiosity? Out of personal bias and habit? Of all the reasons for animal research these are the ones least well tolerated by society, a point explored further in Reason 5.
The process of making animals ill and then treating them with a single remedy appears crude and oversimplified to the homeopath, particularly as the focus is almost always on the physical body and on what happens at the organ or cellular level. (According to the Sensation method [Sankaran, 2004] this information equates to Sankaran’s levels 1 and 2: name and fact.) In focusing on the detail researchers become closed to the possibility that the piece of information they seek may not be needed to solve the clinical problem being addressed. And they can lose the bigger picture entirely.
The role of the vital force, for example, which ‘governs without restriction and keeps all parts of the organism in admirable, harmonious, vital operation’, is rarely explored. This is unsurprising given the mainstream view that humans and animals are simply physical beings made of component parts rather than energetic ones capable of existing and experiencing them- selves at many different levels simultaneously (Morrish, 2007). Yet to overlook the vital force when studying homeopathy seems absurd. So too does the one- condition-one-remedy approach and inattention to emotional state (usually fear) unless, of course, it forms part of the experiment. This is not homeopathy. It is a pale and distorted version of the therapy that ultimately does it no favours (see Reasons 3, 5, 6).
The great majority of our patients present with chronic complaints that develop naturally and uniquely, conditions that are influenced by life events, environmental factors, inherited traits and so on that all need to be considered when prescribing. Relatively few patients present with severe poisonings, burns, or artificially induced tumours and, even if they did, they would receive individualised treatment because homeopaths, of course, practise ‘personalised medicine’ (see Reason 7) and prescribe on the totality of the symptoms not the condition itself.
If animal experiments don’t positively influence patient care, don’t add significantly to the evidence base and haven’t brought us any closer to discovering mode of action, then who exactly does benefit from this research and why is it still being done? To boost publication records and academic careers? Out of curiosity? Out of personal bias and habit? Of all the reasons for animal research these are the ones least well tolerated by society, a point explored further in Reason 5.
The process of making animals ill and then treating them with a single remedy appears crude and oversimplified to the homeopath, particularly as the focus is almost always on the physical body and on what happens at the organ or cellular level. (According to the Sensation method [Sankaran, 2004] this information equates to Sankaran’s levels 1 and 2: name and fact.) In focusing on the detail researchers become closed to the possibility that the piece of information they seek may not be needed to solve the clinical problem being addressed. And they can lose the bigger picture entirely.
The role of the vital force, for example, which ‘governs without restriction and keeps all parts of the organism in admirable, harmonious, vital operation’, is rarely explored. This is unsurprising given the mainstream view that humans and animals are simply physical beings made of component parts rather than energetic ones capable of existing and experiencing them- selves at many different levels simultaneously (Morrish, 2007). Yet to overlook the vital force when studying homeopathy seems absurd. So too does the one- condition-one-remedy approach and inattention to emotional state (usually fear) unless, of course, it forms part of the experiment. This is not homeopathy. It is a pale and distorted version of the therapy that ultimately does it no favours (see Reasons 3, 5, 6).
Reason 4: It’s not homeopathy
Most basic animal research in homeopathy is geared towards testing the efficacy of a highly diluted medicine rather than the effectiveness of homeopathy itself. The work is heavily influenced by an allopathic approach to disease and treatment and it reflects both the conventional backgrounds of the researchers involved and a lack of training and experience in homeo- pathic prescribing. The remedies used are sometimes patented combinations, the homeopathic rationale for which may be unclear (Canova, for example, contains 17 different remedies, 15 of which are polycrests). More typically they are single polycrests and usually relevant to the condition studied – although this is not always the case. One study used Chamomilla 6c to treat depression in mice induced by housing healthy animals with dying cage mates (Pinto et al, 2008). The researchers concluded from behavioural studies that the remedy ‘hastened the recovery of normal behaviour’ but, as the results did not appear to be statistically significant, this conclusion lacks foundation. From a homeopathic perspective Chamomilla appears a strange choice for the condition studied, but then the researchers in question may not have seen the effects of the remedy on a fractious two-year old cutting teeth.
Most basic animal research in homeopathy is geared towards testing the efficacy of a highly diluted medicine rather than the effectiveness of homeopathy itself. The work is heavily influenced by an allopathic approach to disease and treatment and it reflects both the conventional backgrounds of the researchers involved and a lack of training and experience in homeo- pathic prescribing. The remedies used are sometimes patented combinations, the homeopathic rationale for which may be unclear (Canova, for example, contains 17 different remedies, 15 of which are polycrests). More typically they are single polycrests and usually relevant to the condition studied – although this is not always the case. One study used Chamomilla 6c to treat depression in mice induced by housing healthy animals with dying cage mates (Pinto et al, 2008). The researchers concluded from behavioural studies that the remedy ‘hastened the recovery of normal behaviour’ but, as the results did not appear to be statistically significant, this conclusion lacks foundation. From a homeopathic perspective Chamomilla appears a strange choice for the condition studied, but then the researchers in question may not have seen the effects of the remedy on a fractious two-year old cutting teeth.
Reason 5: Public opinion
Public concern about the use of animals in research is a powerful agent for change. It has brought about such things as a complete ban on the testing of cosmetics in Europe and Norway in 2013 (swiftly followed by similar bans in Israel, India and Sao Paulo in Brazil) and has led to the establish- ment of numerous centres around the world researching alternatives to animal testing in toxicology
and medicine.
In 2009 a wide-ranging poll was carried out by YouGov in six EU member states (UK, France, Italy, Germany, Czech Republic, Sweden) before the introduction of a new EU directive on the protection of animals in scientific research (Directive 2010/63/EU). The results were highly consistent across the region and are summarised below.
79% of those polled either agreed or strongly agreed that the new law should prohibit all experi- ments on animals which do not relate to serious or life-threatening human conditions, signalling a clear opposition to all non-essential and curiosity-driven research.
84% of respondents either agreed or strongly agreed that the new law should prohibit all experiments causing severe pain or suffering to any animal, while 80% of those questioned agreed or strongly agreed that all information about animal experiments should be pub- licly available, except confidential information and information that would identify researchers or where they work.
Directive 2010/63/EU, now part of law in all member states, broadly reflects these attitudes and desires. Its emphasis on transparency is expected to have a major influence on the use of animals in scientific research in Europe – and ultimately in other parts of the world.
The directive requires all researchers to produce a short non-technical summary of the work they plan to do with animals. In it they will need to state the unknowns that are being addressed, the predicted harm that will be done to the animals and why alternatives can’t be used. These summaries will be published on national websites that can be accessed by the public. Entering words such as 'homeopathy’ or ‘ultra-high dilution’ and ‘animal model’, for example, into a database search will retrieve information on all relevant studies in that country.
Public concern about the use of animals in research is a powerful agent for change. It has brought about such things as a complete ban on the testing of cosmetics in Europe and Norway in 2013 (swiftly followed by similar bans in Israel, India and Sao Paulo in Brazil) and has led to the establish- ment of numerous centres around the world researching alternatives to animal testing in toxicology
and medicine.
In 2009 a wide-ranging poll was carried out by YouGov in six EU member states (UK, France, Italy, Germany, Czech Republic, Sweden) before the introduction of a new EU directive on the protection of animals in scientific research (Directive 2010/63/EU). The results were highly consistent across the region and are summarised below.
79% of those polled either agreed or strongly agreed that the new law should prohibit all experi- ments on animals which do not relate to serious or life-threatening human conditions, signalling a clear opposition to all non-essential and curiosity-driven research.
84% of respondents either agreed or strongly agreed that the new law should prohibit all experiments causing severe pain or suffering to any animal, while 80% of those questioned agreed or strongly agreed that all information about animal experiments should be pub- licly available, except confidential information and information that would identify researchers or where they work.
Directive 2010/63/EU, now part of law in all member states, broadly reflects these attitudes and desires. Its emphasis on transparency is expected to have a major influence on the use of animals in scientific research in Europe – and ultimately in other parts of the world.
The directive requires all researchers to produce a short non-technical summary of the work they plan to do with animals. In it they will need to state the unknowns that are being addressed, the predicted harm that will be done to the animals and why alternatives can’t be used. These summaries will be published on national websites that can be accessed by the public. Entering words such as 'homeopathy’ or ‘ultra-high dilution’ and ‘animal model’, for example, into a database search will retrieve information on all relevant studies in that country.
At the time of writing no basic homeopathic research involving animals appears to be taking place in the UK, although British journals continue to provide a platform for this work. In other EU coun- tries researchers are likely to find their work coming under close scrutiny in the coming years, particularly by campaigning organisations. Judging by the response to the YouGov poll it isn’t hard to predict how the public would view harmful experiments on animals that involved safe medicines already tested on humans – and information spreads fast in the digital age. The UK homeopathic community, both practitioners and patients alike, would certainly be unhappy and want clarification on the issue by professional registering bodies and homeopathic pharmacies. The response from those not sympathetic to homeopathy might understandably be stronger ...
Reason 6: It’s quite possibly
unlawful (depending on where
you’re doing it)
Directive 2010/63/EU places strong
emphasis on the 3Rs (test methods
which replace, refine and reduce
the use of laboratory animals) and
especially on replacement. The
goal of the directive is to achieve
full replacement of procedures on
live animals for scientific and edu-
cational purposes as soon as it is scientifically possible to do so.
Article 4 states that: ‘wherever
possible, a scientifically satisfactory
method or testing strategy, not
entailing the use of live animals,
shall be used instead of a procedure.’ Within homeopathy it
should be easy to comply with the
3Rs requirement and with Article 4
for the obvious reason that our
medicines have always been tested
on people, not animals.
European researchers who continue to harm animals in the course of homeopathic enquiry may find themselves open to legal challenge by campaigning welfare organisations who will be monitoring the new databases. These organisations would refer to the harm / benefit test now required by EU law and argue that the predicted harm would not be justified by the expected outcome (see Reason 3). They would also argue that homeopathic medicines have been around for a long time, a lot is already known about them from human studies and there is no legal requirement to test them on animals prior to using them on humans. They would cite the many alternatives (humans, plant bioassays, in vitro tests) that exist, and their case would be strong.
European researchers who continue to harm animals in the course of homeopathic enquiry may find themselves open to legal challenge by campaigning welfare organisations who will be monitoring the new databases. These organisations would refer to the harm / benefit test now required by EU law and argue that the predicted harm would not be justified by the expected outcome (see Reason 3). They would also argue that homeopathic medicines have been around for a long time, a lot is already known about them from human studies and there is no legal requirement to test them on animals prior to using them on humans. They would cite the many alternatives (humans, plant bioassays, in vitro tests) that exist, and their case would be strong.
Outside Europe, in countries
with weaker legislation, there is
even wider scope for harm. India
is harmonising animal welfare law with EU legislation but doubts exist over how practical these frameworks are and how seriously the government takes their enforcement (Akbarsha MA and Hartung T, 2013).
In Brazil law-makers have worked hard to overhaul 1987 welfare rules governing the use of animals in scientific research, yet the new 2008 legislation has numerous significant omissions, for example it fails to refer to or place emphasis on the 3Rs, has no severity classification system for procedures and does not even require research to be designed with consideration for its relevance to human and animal health, the advancement of knowledge or the good of society (Filipecki et al, 2011). It thus falls to the National Council for the Control of Animal Experimentation to develop strategies to improve regulations and to positively influence both animal welfare and the ingrained culture of animal experimentation in the country. This could take many years.
is harmonising animal welfare law with EU legislation but doubts exist over how practical these frameworks are and how seriously the government takes their enforcement (Akbarsha MA and Hartung T, 2013).
In Brazil law-makers have worked hard to overhaul 1987 welfare rules governing the use of animals in scientific research, yet the new 2008 legislation has numerous significant omissions, for example it fails to refer to or place emphasis on the 3Rs, has no severity classification system for procedures and does not even require research to be designed with consideration for its relevance to human and animal health, the advancement of knowledge or the good of society (Filipecki et al, 2011). It thus falls to the National Council for the Control of Animal Experimentation to develop strategies to improve regulations and to positively influence both animal welfare and the ingrained culture of animal experimentation in the country. This could take many years.
Reason 7: It’s not necessary
Mainstream medicine has built its foundations on animal research, yet these are looking increasingly shaky as scientists begin to evaluate evidence for the reliability and success of animal models in predicting effects in humans. A recent article in the BMJ highlighted the fact that even the most promising findings from animal research often fail in human trials and are rarely adopted into clinical practice (Pound and Bracken, 2014). The authors concluded that the benefits of animal research remain un- proven and may divert funds from research that would be more rele- vant to doctors and their patients.
Elsewhere an open letter from 21 scientists to Prime Minister David Cameron stressed the dangers of relying on animal models when testing drugs intended for humans and emphasised the need for greater use of human-based test methods (Archibald et al, 2011). Increasingly such methods are com- ing online, ranging from sophisticated computer programmes that can detect toxicity in minutes rather than months of animal testing, to in vitro models that simulate whole organs and organ systems. Thus mainstream biomedical research appears to be moving away from animal models, albeit slowly, driven by public opinion, the need to reduce the incidence of adverse drug reactions (ADRs) and the cost and time required to bring a new drug to market.
Mainstream medicine has built its foundations on animal research, yet these are looking increasingly shaky as scientists begin to evaluate evidence for the reliability and success of animal models in predicting effects in humans. A recent article in the BMJ highlighted the fact that even the most promising findings from animal research often fail in human trials and are rarely adopted into clinical practice (Pound and Bracken, 2014). The authors concluded that the benefits of animal research remain un- proven and may divert funds from research that would be more rele- vant to doctors and their patients.
Elsewhere an open letter from 21 scientists to Prime Minister David Cameron stressed the dangers of relying on animal models when testing drugs intended for humans and emphasised the need for greater use of human-based test methods (Archibald et al, 2011). Increasingly such methods are com- ing online, ranging from sophisticated computer programmes that can detect toxicity in minutes rather than months of animal testing, to in vitro models that simulate whole organs and organ systems. Thus mainstream biomedical research appears to be moving away from animal models, albeit slowly, driven by public opinion, the need to reduce the incidence of adverse drug reactions (ADRs) and the cost and time required to bring a new drug to market.
The great irony (that won’t be
lost on practising homeopaths) is
that two of the latest testing tech-
nologies suggest this movement is towards a rudimentary form of homeopathy.
One method is ‘micro-dosing’, which involves giving human volunteers tiny doses of a potential drug at levels high enough to allow scientists to see its effects in the body but not high enough to cause harm.
The second is ‘personalised medicine’, in which scientists obtain genetic and molecular information from a person in order to predict how they will react to a certain drug. The aim of this is to make treatment more targeted and effective and to reduce the number of ADRs.
ADRs of course have never been a stumbling block for homeopathy. The safety of our medicines has allowed experimentation on large numbers of consenting men and women of all ages and ethnicities, each of whom has been able to communicate their reactions and experiences, whether physical, mental or emotional. Over the decades this non-harmful, human-based research has led to the development of a rich, multi-dimensional and valuable homeopathic materia medica tailor-made for ‘personalised medicine’, and to a greater understanding of the nature of health and disease. As Close observed almost a century ago:
‘Experiments of homoeopathy are made by men, upon men, for men under the natural conditions which belong to the everyday life of all men’ (Close, 1924).
It comes as another ironic twist then to see homeopathic research move away from humans as the primary research subjects and towards genetically identical laboratory animals maintained in carefully controlled environments.
One method is ‘micro-dosing’, which involves giving human volunteers tiny doses of a potential drug at levels high enough to allow scientists to see its effects in the body but not high enough to cause harm.
The second is ‘personalised medicine’, in which scientists obtain genetic and molecular information from a person in order to predict how they will react to a certain drug. The aim of this is to make treatment more targeted and effective and to reduce the number of ADRs.
ADRs of course have never been a stumbling block for homeopathy. The safety of our medicines has allowed experimentation on large numbers of consenting men and women of all ages and ethnicities, each of whom has been able to communicate their reactions and experiences, whether physical, mental or emotional. Over the decades this non-harmful, human-based research has led to the development of a rich, multi-dimensional and valuable homeopathic materia medica tailor-made for ‘personalised medicine’, and to a greater understanding of the nature of health and disease. As Close observed almost a century ago:
‘Experiments of homoeopathy are made by men, upon men, for men under the natural conditions which belong to the everyday life of all men’ (Close, 1924).
It comes as another ironic twist then to see homeopathic research move away from humans as the primary research subjects and towards genetically identical laboratory animals maintained in carefully controlled environments.
If all animal experimentation
were to be banned tomorrow, then
research into homeopathy would
be more likely to thrive than to
suffer. The focus would shift easily
towards humans – both healthy
and sick; to sick animals, to well-trialled plant bioassays and in vitro
tests. Funding would be reassigned
and progress towards a large, high-quality evidence-base accelerated.
We could take full and confident
advantage of the safety of homeopathic medicines – downplayed by
an allopathic approach to homeopathic research – and, perhaps most importantly, research would
fully reflect the ethical principles
and innovative thinking that led to
homeopathy’s birth.
REFERENCES
Akbarsha MA, Hartung T (2013) ‘India must move on reforming animal welfare in research’. SciDevNet 26 November 2013. www.scidev.net (accessed 4 August 2014)
Alecu A, Alecu M, Brezeanu R, Marcus G, Cojocaru A (2010) ‘Designs for research of high dilu- tions in animal models: an update’. Int J High Dilution Res; 9(30): 05-15
Archibald K, Coleman R, Foster C (2011) – on behalf of 19 other signatories: ‘Open letter to UK Prime Minister David Cameron and Health Secretary Andrew Lansley on safety of medicines’. Lancet 377: 1915.
Balcombe JP, Barnard ND, Sandusky C (2004) ‘Laboratory routines cause animal stress’. Contemp Top Lab Anim Sci 43: 42-51
Banerjee P, Pathak S, Naoual B, Khuda-Bukhsh AR (2008) ‘Comparative efficacy of two microdoses of a potentized homeopathic drug, Arsenicum album, to ameliorate toxicity induced by repeated sublethal injections of arsenic trioxide in mice’. Pathobiology 75(3): 156-170
Bildet J, Guyot M, Bonini F, Grignon MC, Poitevin B, Quilichini R (1989) ‘The effect of dilutions of Apis mellifica and Apium virus on ultraviolet light- induced erythema in the guinea pig’. Ann Pharm Fr.47(1): 24-32
Bonamin LV & Endler PC (2010) ‘Animal models for studying homeopathy and high dilutions: a conceptual critical review’. Homeopathy 99(1): 37-50
Akbarsha MA, Hartung T (2013) ‘India must move on reforming animal welfare in research’. SciDevNet 26 November 2013. www.scidev.net (accessed 4 August 2014)
Alecu A, Alecu M, Brezeanu R, Marcus G, Cojocaru A (2010) ‘Designs for research of high dilu- tions in animal models: an update’. Int J High Dilution Res; 9(30): 05-15
Archibald K, Coleman R, Foster C (2011) – on behalf of 19 other signatories: ‘Open letter to UK Prime Minister David Cameron and Health Secretary Andrew Lansley on safety of medicines’. Lancet 377: 1915.
Balcombe JP, Barnard ND, Sandusky C (2004) ‘Laboratory routines cause animal stress’. Contemp Top Lab Anim Sci 43: 42-51
Banerjee P, Pathak S, Naoual B, Khuda-Bukhsh AR (2008) ‘Comparative efficacy of two microdoses of a potentized homeopathic drug, Arsenicum album, to ameliorate toxicity induced by repeated sublethal injections of arsenic trioxide in mice’. Pathobiology 75(3): 156-170
Bildet J, Guyot M, Bonini F, Grignon MC, Poitevin B, Quilichini R (1989) ‘The effect of dilutions of Apis mellifica and Apium virus on ultraviolet light- induced erythema in the guinea pig’. Ann Pharm Fr.47(1): 24-32
Bonamin LV & Endler PC (2010) ‘Animal models for studying homeopathy and high dilutions: a conceptual critical review’. Homeopathy 99(1): 37-50
Bousta D, Soulimani R, Jarmouni I, Belon P, Falla J, Froment N, Younos C (2001) ‘Neurotropic, immunological and gastric effects of low doses of Atropa belladonna L., Gelsemium sempervirens L. and Poumon histamine in stressed mice’. J Ethnopharmacol 74: 205- 215.
British Homeopathic Association (2014) www.britishhomeopathic.org/evidence/ (accessed 4 August 2014)
Camerlink I, Ellinger L, Bakker EJ, Lantinga EA. (2010) ‘Homeopathy as replacement to antibiotics in the case of Escherichia coli diarrhoea in neonatal piglets’. Homeopathy 99(1): 57-62
Close S (1924). The Genius of Homoeopathy: Lectures and Essays on Homoeopathic Prescribing. Reprinted 1999, B. Jain Publishers
Conforti A, Bellavite P, Bertani S, Chiarotti F, Menniti-Ippolito F, Raschetti R (2007) ‘Rat models of acute inflammation: a randomized controlled study on the effects of homeopathic remedies’. BMC Complement Altern Med 7: 1-10
D’Aprile L, da Rocha MMT, Motta PD, de Paula Coelho C, dos Santos CR, Bonamin LV (2013) ‘Effectiveness of different prepara- tions of homeopathic Arnica mon- tana in experimental treatment of poisoning with poison Philodryas olfersii’. Int J High Dilution Res. 12(44):109-111
Datta S, Biswas SJ, Khuda-Bukhsh
AR (2004) ‘Comparative efficacy
of pre-feeding, post-feeding and
combined pre- and post-feeding of two microdoses of a potentized
homeopathic drug, Mercurius solu-
bilis, in ameliorating genotoxic
effects produced by Mercuric chlo-
ride in mice’. eCAM 1(3): 291-300
De Almeida LR, de Oliveira Campos MC, Herrera HM, Bonamin LV, da Fonseca AH (2008) ‘Effects of homeopathy in mice experimentally infected with Trypanosoma cruzi’. Homeopathy 97: 65–69 Directive 2010/63/EU http://eur- lex.europa.eu/legal-content/EN/ TXT/?uri=CELEX:32010L0063
Dos Santos AL, Perazzo FF, Cardoso LG, Carvalho JC (2007)’ In vivo study of the anti-inflamma- tory effect of Rhus toxicodendron’. Homeopathy 96(2): 95-101
Elliott M (2001) ‘Cushings Disease: a new approach to therapy in equine and canine patients’. British Homeopathic Journal 90: 33-36
Estrêla W, Caetano R (2013) ‘Homeopathy in Brazil: inquiry into its academic production’. Int J High Dilution Res 12(42): 13-25
Filipecki ATP, Machado CJS, Valle S, de Oliveira Teixeira M (2011) ‘The Brazilian Legal Framework on the Scientific Use of Animals’. ILAR e-Journal Volume 52(e8-e15) 9pp (accessed 31 July 2014)
Gawade SP (2012) ‘Acetic acid induced painful endogenous inflic- tion in writhing test on mice’.
J Pharmacol Pharmacother 3: 348
Herrick, N (1998) Animal Mind, Human Voices. Narayana Publishers
Hess DR (2004) ‘What is evidence- based medicine and why should I care?’ Respir Care 49(7): 730-741
Kumar S, Nayak C (2008) ‘Ultra Dynamised and Undynamised Dilutions of Alloxan at Micro- doses Influence Selective Pancreatic Beta Cell and Hormonal Profile: An Experimental Approach’. Indian Journal of Research in Homoeopathy 2(4): 10-19
Leal MF, Antunes LM, Lamarao MF, Araujo da Silva CE, da Silva IDCG, Assumpcao PP, Andrade EF, Rezende AP, Imbeloni AA, Muniz JAPC, Pinto GR, Smith MAC, Burbano RR (2012) ‘The protective effect of Canova homeopathic medicine in cyclophosphamide- treated non-human primates’. Food Chem Toxicol 50(12): 4412-4420
Mohammadi R, Amini K, Charehsaz S (2012) ‘Homeopathic treatment for peripheral nerve regeneration: an experimental study in a rat sciatic nerve transection model’. Homeopathy 101(3): 141-146
De Almeida LR, de Oliveira Campos MC, Herrera HM, Bonamin LV, da Fonseca AH (2008) ‘Effects of homeopathy in mice experimentally infected with Trypanosoma cruzi’. Homeopathy 97: 65–69 Directive 2010/63/EU http://eur- lex.europa.eu/legal-content/EN/ TXT/?uri=CELEX:32010L0063
Dos Santos AL, Perazzo FF, Cardoso LG, Carvalho JC (2007)’ In vivo study of the anti-inflamma- tory effect of Rhus toxicodendron’. Homeopathy 96(2): 95-101
Elliott M (2001) ‘Cushings Disease: a new approach to therapy in equine and canine patients’. British Homeopathic Journal 90: 33-36
Estrêla W, Caetano R (2013) ‘Homeopathy in Brazil: inquiry into its academic production’. Int J High Dilution Res 12(42): 13-25
Filipecki ATP, Machado CJS, Valle S, de Oliveira Teixeira M (2011) ‘The Brazilian Legal Framework on the Scientific Use of Animals’. ILAR e-Journal Volume 52(e8-e15) 9pp (accessed 31 July 2014)
Gawade SP (2012) ‘Acetic acid induced painful endogenous inflic- tion in writhing test on mice’.
J Pharmacol Pharmacother 3: 348
Herrick, N (1998) Animal Mind, Human Voices. Narayana Publishers
Hess DR (2004) ‘What is evidence- based medicine and why should I care?’ Respir Care 49(7): 730-741
Kumar S, Nayak C (2008) ‘Ultra Dynamised and Undynamised Dilutions of Alloxan at Micro- doses Influence Selective Pancreatic Beta Cell and Hormonal Profile: An Experimental Approach’. Indian Journal of Research in Homoeopathy 2(4): 10-19
Leal MF, Antunes LM, Lamarao MF, Araujo da Silva CE, da Silva IDCG, Assumpcao PP, Andrade EF, Rezende AP, Imbeloni AA, Muniz JAPC, Pinto GR, Smith MAC, Burbano RR (2012) ‘The protective effect of Canova homeopathic medicine in cyclophosphamide- treated non-human primates’. Food Chem Toxicol 50(12): 4412-4420
Mohammadi R, Amini K, Charehsaz S (2012) ‘Homeopathic treatment for peripheral nerve regeneration: an experimental study in a rat sciatic nerve transection model’. Homeopathy 101(3): 141-146
Morrish M (2007) Homeopathy – a Rational Choice in Medicine. Yondercott Press
Morton D (2013) ‘Practical issues for the implementation of harm-benefit assessments. Oral presentation, Animal Research, Ethics and Public Policy Seminar’. Centre For Animals and Social Justice, University of Leicester 4 July 2013
Oberbaum M, Spira RM, Lukasiewicz E, Armon Y, Samuels N, Singer SR, Barak V, Izbicki G, Einav S, Hersch M (2011) ‘Effect of Traumeel S on cytokine profile in a cecal ligation and puncture (CLP) sepsis model in rats’. J Altern Complement Med 17(10): 909-913
Osborne N (2011) ‘Reporting animal research – worthy of a rethink? Learned Publishing 24(1): 5-7
Patel DR, Ansari IA, Kachchhi YN, et al (2012) ‘Toxicodendron pubes- cens retains its anti-arthritic effica- cy at 1M, 10M and CM homeo- pathic dilutions’. Homeopathy 101(3): 165-170
Phillips B, Ball C, Sackett D, Badenoch D, Straus S, Haynes B, Dawes M, updated by Jeremy Howick (2009) ‘Levels of Evidence March 2009’. Oxford Centre for Evidence-based Medicine. www.cebm.net (accessed 1 August 2014)
Pinto SA, Bohland E, Coelho C de P, Morgulis MS, Bonamin LV (2008) ‘An animal model for the study of Chamomilla in stress and depression: pilot study’. Homeopathy 97(3): 141-144
Pound P, Bracken M (2014) ‘Is ani- mal research sufficiently evidence based to be a cornerstone of bio- medical research?’ BMJ 2014;348:g3387 (accessed 1 August 2014)
Relton C, Torgerson D, O’Cathain A, Nicholl J (2010) ‘Rethinking pragmatic randomised controlled trials: introducing the “cohort multiple randomised controlled trial” design’. BMJ 2010; 340:c1066 doi: 10.1136/bmj.c1066 (accessed 4 August 2014)
Sankaran R (2004) The Sensation in Homoeopathy, 2nd Edition, Homoeopathic Medical Publishers
Sarkar A, Datta P, Kumar Das A, Gomes A (2014) ‘Anti-rheumatoid and anti-oxidant activity of homeo- pathic Guaiacum officinale in an animal model’. Homeopathy 103(2): 133-138
Wiebers DO (1994) ‘Animals and Medical Science: Vision of a New Era’. www.theosophy-nw.org/ theosnw/issues/an-wieb.htm (accessed 1 August 2014) Wemelsfelder F (1994) ‘Animal boredom – a model of chronic suffering in captive animals and its consequences for environmental enrichment’. Hum innov altern 8: 587-591
Zubedat S, Freed Y, Eshed Y, Cymerblit-Sabba A, Ritter A, Nachmani M, Harush R, Aga- Mizrachi S, Avital A (2013) ‘Plant- derived nanoparticle treatment with Cocc 30c ameliorates atten- tion and motor abilities in sleep- deprived rats’. Neuroscience 253: 1-8
force itself. They affect the whole organism, touching the mind and spirit as much as they act on the body. If we want to explain the mode of action it would seem logical to study the energetic qualities of our remedies and the phenomenon of the vital force itself, not simply the physical manifestations of treatment. Homeopathy is not allopathy, it is energy medicine and it requires a completely new approach to research. To quote a wise but unknown author: ‘If you always do what you always did, you will always get what you always got’. Over the decades
T
f
No comments:
Post a Comment
Note: only a member of this blog may post a comment.